
Computing the Planck Function. 
(R.B.Smith, February 2003; revised Sept. 21, 2005) 

 
1. Introduction  

The Planck Function is used frequently to compute the radiance emitted from objects that 
radiate like a perfect “Black Body”. Its derivation is one of the triumphs of 20th Century 
physics.  The inverse of the Planck Function is used to find the “brightness temperature” 
of an object whose emitted radiance has been measured. 
 
The precise formula for the Planck function depends on whether the radiance is reckoned 
on a “per unit wavelength” basis or a “per unit frequency” basis. In the former case, the 
formula is 
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where in cgs units:  h = 6.626068 x10-27 erg sec Planck’s Constant 
   k =1.38066 x10-16 erg deg-1 Boltzman’s Constant 

c =2.997925x10+10 cm/sec Speed of light in vacuum 
T = object temperature in Kelvins 

 
If these cgs units are used consistently, the units of will be ergs/cmλB 3/sec/steradian. 
Note that the numerator of the formula must have these units, as the denominator has no 
units. Also note that the exponent in the denominator 
 
  Tkhc λβ /=  
 
must have no units. All the units must cancel inside beta. 
 
In the SI ( i.e. mks) system the physical constants are 
 
 h = 6.626068x10-34 joule sec 
 k =1.38066x10-23 joule deg-1

 c =2.997925x10+8 m/s 
 T = object temperature in Kelvins 
 
The units of will be Joules/mλB 3/sec/steradian.  Note that ergs and Joules are both units 
of energy. A Watt is a Joule per second. One erg is 10-7 Joules. 

2. Computing emitted radiance from temperature 
Let’s do an example of a Planck function computation. Consider an object at T = -60C = 
213K. Compute the emitted radiance at a wavelength of 10 microns. We’ll use the SI 
system (i.e. meters and Joules). The wavelength becomes m510−=λ .  The exponent is 
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Note that the units ( meters, seconds, Joules and Kelvins) cancel within beta. Beta would 
have the same value if cgs units were used.  
 
The denominator of the Planck Function is 3.870177.6 =−e .  The numerator of the 
Planck function is 
 

1137552834 103.119)100.1()/100.3)(1063.6(2 −−−−−− ×=××× steradiansJmmsmJs
 
so the full Planck Function is  
 
 11377 10137.03.870/103.119 −−−×=×= steradiansJmBλ  
 
Often, the “per wavelength” part of radiance is expressed in microns instead of meters. 
Thus (note the change in value) 
 

111237.1 −−−−= msteradiansJmB µλ  
 

3. Finite increments of wavelength, area and solid angle 
In an actual problem, the range of wavelength, solid angle and surface area would be 
specified. For example, consider a range of wavelength centered on 10 microns; say 8 to 
12 microns. The wavelength increment is then 

mmmm 61044812 −×==−=∆ µµµλ .  Consider a solid angle of 
steradians. Consider also a square emitting area with dimensions 2 meters by 

2 meters; that is 

410−=∆Ω
24mA =∆ . 

 
The rate of energy emission ( i.e. Power P) satisfying these constraints is  
 

WattsATBP 3467 10192.2)4)(10)(104)(10137.0()( −−− ×=××=∆Ω∆∆= λλ   
 
This is the amount of energy per unit time emitted from a 4m2 area, with wavelength 
between 8 and 12 microns, beaming into a 10-4 angle cone. Note that a Watt is a Joule per 
second.   

4. Computing temperature from observed radiance 
In our second example, we observe a certain radiance coming from an object. We invert 
the Planck Function to find its temperature. A temperature found in this way is called the 
“brightness temperature”.  Let’s assume that we observe a region of the earth emitting a 
radiance   Wm7105.0 ×=λI -3steradian-1 in the TIR window at mµλ 10= . First, we s
the Planck Function for temperature, inserting λI  for λ . Stepwise 

olve 
B 
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where ln is the natural log. To make the substitutions more systematic, define the factors  
 

      52
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So that the inverted Planck function can be written (see the Landsat Handbook) 
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For the given wavelength ( ), and . 
Substituting the observed radiance 

m510−=λ 137
1 10104.119 −−×= srWmK KK 765.14382 =

 

Then KT 6.262
477.5

8.1438
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Our estimate of surface temperature is then 262.6 K= -10.5 C. 
 
The reader can verify that if we had observed Wm710137.0 ×=λI -3steradian-1 , we would 
have recovered the temperature used in the first example (T=213K). The higher radiance 
used here, gave a higher brightness temperature.  
 
Often, the radiance is given in units of  Wm-2steradian-1micron-1. In this case, the values 
will be 10-6 smaller, and K1 must be divided by 106 (see Table) 
 
Table: Values of K1 and K2 computed for specific sensor bands 
Sensor Band Range 

(microns) 
Center 
(microns)

K1x10-7

 (SI) 
K1
(per micron) 

K2
 (Kelvin) 

Example   10 119.104 1191.04 1438.765 
ETM+ 6 10.4-12.5 11.45 60.51 605.1* 1256.6* 
MODIS  31 10.78-11.28 11.03 72.957 729.57 1304.4 
MODIS  32 11.77-12.27 12.02 47.471 474.71 1197.0 
(* The USGS values are  K1=660.09, K2=1282.7. They probably use 11.22 for the center 
wavelength) 
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5. Non-Black Body radiation 
 
If the emitting object is not a perfect Black Body, it will emit less that the Planck 
Function predicts. We write 
 
  λλλ ε BI =  
Where epsilon is the “emissivity” ( 10 << λε ).  The emissivity is equal to one for Black 
Body emission. When estimating the temperature of an object, we should account for a 
reduced emissivity.  Our inverted Planck function becomes 
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In the previous example with Wm7105.0 ×=λI -3sr-1 at mµλ 10= , if 95.0=ε , then 
T=265.06K instead of 262.6K. To emit the same radiance with a lower emissivity 
requires a higher temperature. 
 
Emissivity values in the thermal infrared are usually quite high, exceeding 0.9, so the 
temperature error in neglecting non-Black Body effects is only a few degrees. In the 
microwave region of the spectrum however, the emissivity can be much lower.  
 
Proposals have been made for extracting both surface temperature and emissivity from 
satellite data. See for example, Schmugge et al. , 1998, Recovering Surface Temperature 
and Emissivity from Thermal Infrared Multispectral Data, Remote Sens. Environ., 65, 
121-131.  
 

6. Correcting for atmospheric effects 
 
The TIR radiation emitted from the earth’s surface is modified slightly by the atmosphere 
before it reaches the satellite. Generally, the earth’s atmosphere is quite transparent in the 
wavelength ranges from 8 to 10 and 10 to 12 microns, so these windows are often used 
for surface temperature measurements.  There is however still some of absorption or 
emission by water vapor. As the atmosphere is generally cooler than the surface, the 
absorption will dominate over emission and the radiance reaching the satellite will be 
slightly less than the emitted radiance. If this is not corrected for, our estimated surface 
temperature will be too cold.   
 
Several methods have been proposed to correct for TIR absorption. Best known is the 
split-window technique.  The brightness temperature is computed for two bands with 
different amounts of known absorption. Then, the actual temperature can be worked out. 
If auxiliary information about the atmospheric water vapor concentration is available, a 
radiative transfer algorithm can be used to compute the at-ground TIR radiance. Using 
this value, the inverted Planck function will give the correct surface brightness 
temperature.  
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