
Important Terms in  
Principle Component Analysis (PCA) 

 
1. Factor analysis: The search for the “factors” (i.e. band combinations) that contain 

the most information. 
2. Original Data: The set of brightness values for n bands and m pixels. A two-band 

example with m=11 data points is shown in the figure. (diagrams from LI Smith) 
 

                      
 

3. PCA: A linear method of factor analysis that uses the mathematical concepts of 
eigenvalues and eigenvectors. It amounts to a “rotation” of the coordinate axes to 
identify the Principle Components. 

4. Principle Component: An optimum linear combination of band values comprising 
a new data layer (or image).  

5. Co-variance: A measure of the redundancy of two bands (i and j), created by 
summing the product of the two band values over all the pixels (M). 

6. Correlation: Co-variance normalized by the variances of the two bands 
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7. Redundant bands: Bands with a CC=1 contain the same information.  
8. Correlation Matrix: a square symmetric matrix containing the correlation 

coefficients between every pair of bands. It contains statistical information about 
the data.  

9. Eigenvector: The set of weights applied to band values to obtain the PC 
10. Eigenvalue: A measure of the variance in a PC.  
11. Axes Rotation: Multiplying the original data matrix by a matrix of eigenvectors is 

equivalent to rotating the data to a new coordinate system. (Note the pattern in the 
example above on the right) 



Outline of Principle Component Analysis 
 

 
1. Start with an image data set including the reflectance values from n bands with m 

pixels. This non-square nxm matrix will be called D .   The location of the 
pixels does not enter this description of the data set.  
  

2. This data set may contain “redundancies”, i.e. bands whose reflectances correlate 
perfectly with another band. It may also contain noise.  Our definition of noise is 
signal that does not correlate at all between bands   
 

3. Subtract the means from each band and compute the variances and co-variances 
between each pair of bands. Place these values into an nxn square matrix.  It is 
symmetric. Normalize the co-variances by the square-root of the variances to 
form the correlation matrix  A .  This is a useful matrix to study, and it forms the 
basis of PCA. [At this point, one could just delete bands that correlate well with 
other bands. This action would reduce the size of the data set. The PCA method 
below is more objective and systematic.] 
 

4. Find the eigenvalues and eigenvectors of the dataset by solving 
 

0)( =− VA λ      (1) 
 

where λ is an eigenvalue and V is an eigenvector. The word “eigen” means that 
these quantities are characteristics of the correlation matrix A .  They reveal the 
hidden properties of A .   Typically there will be n different solutions to (1), so 
there will be n paired eigenvalues and eigenvectors ( i.e. iλ .and iV ). The 

eigenvalues will be real and positive (because A is symmetric).  We usually list 
these eigenvalues and eigenvectors in order of decreasing eigenvalue.  That is, the 
first eigenvector corresponds to the largest eigenvalue. 
 
[ In words, (1) says that for a given square matrix A , there is some vector 
V such that the product VA equals the product of some scalar (λ ) times that 
same vector V . We omit a discussion of how (1) is solved.] 
 

5. The eigenvectors have a dimension equal to n, i.e. the number of original bands. 
The first eigenvector represents a synthetic spectrum containing the largest 
variance across the scene. 
 



Ron’s Rule of Thumb. “The first eigenvector usually resembles the difference in 
spectral signatures between the two most dominant land cover classes.”  For 
example, in a landscape composed of vegetation and bare soil, the first 
eigenvector will resemble the difference in the spectral signature between 
vegetation and soil. When this eigenvector is multiplied times the dataset matrix, 
it is almost like computing an NVDI layer. For a landscape composed entirely of 
deciduous trees and conifers, the first eigenvector will resemble the subtle 
difference between these two vegetation types. It would represent an 
“deciduous/conifer index”. But these indices include all the bands, not just two. 
 

6. The eigenvectors are orthogonal to each other, for example 021 =⋅VV .       They 

are normally scaled so that their length is unity, that is  1|| =iV . With these two 
properties, the multiplying the original dataset by an eigenvector rotates the 
reflectance vector for a pixel. 

 

11 CPVD =⋅      (2) 
 

where PC1 is the first Principle Component.  It is a vector with m components 
representing a brightness value for each pixel, i.e. it is a new single band image. 
Its pixel values are linear combinations of the original band values for that pixel. 
The weights are given by the components of the first eigenvector.  
 
Because of our ordering of eigenvalues, this image contains the most 
“information” of any single image. The first eigenvalue is proportional to the 
brightness variance in the first PC.   
 
To obtain the other Principle Components, we repeat (2) with the other 
eigenvectors so that 
 
   ii CPVD =⋅   i = 2 to n   (3) 
 
and the PC data layers can be stacked to form a new “data cube”.  If desired, only 
the first few PCs can be kept, reducing the size of the dataset. For example, if the 
original dataset had 200 bands (i.e. n = 200), you could keep only the ten PCs 
with the largest eigenvalues. This dataset is only 1/20 of the original size. The 
number of pixels is unchanged. 

 
7. A remarkable property of the new data cube is that the band values are completely 

uncorrelated. There is no more redundancy!  (Actually, the uncorrelated data in 
the original scene is pushed off into the high PC components.) Another property is 
that the bands are ordered by their “information content” (i.e. variance). 
Remember however that the mathematician’s definition of information may not 
be the same as yours!  You might find something important in one of the higher 
PCs.  



 
A disadvantage of the PC representation is that we can no longer identify spectral 
signatures of objects.  A “pixel profile” in the new data cube is not a spectral 
signature (i.e. reflectance plotted against wavelength). 
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